On the relative strength of different generalizations of split cuts

نویسندگان

  • Sanjeeb Dash
  • Oktay Günlük
  • Marco Molinaro
چکیده

Split cuts are among the most important and well-understood cuts for general mixed-integer programs. In this paper we consider some recent generalizations of split cuts and compare their relative strength. More precisely, we compare the elementary closures of split, cross, crooked cross and general multi-branch split cuts as well as cuts obtained from multi-row and basic relaxations. We present a complete containment relationship between the closures of split, rank-2 split, cross, crooked cross and general multi-branch split cuts. More specifically, we show that 3-branch split cuts strictly dominate crooked cross cuts, which in turn strictly dominate cross cuts. We also show that multi-branch split cuts are incomparable to rank-2 split cuts. In addition, we also show that cross cuts, and hence crooked cross cuts, cannot always be obtained from 2-row relaxations or from basic relaxations. Together, these results settle some open questions raised in earlier papers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Generalizations of the Split Closure

Split cuts form a well-known class of valid inequalities for mixed-integer programming problems (MIP). Cook et al. (1990) showed that the split closure of a rational polyhedron P is again a polyhedron. In this paper, we extend this result from a single rational polyhedron to the union of a finite number of rational polyhedra. We also show how this result can be used to prove that some generaliz...

متن کامل

Characterization of the split closure via geometric lifting

We analyze split cuts from the perspective of cut generating functions via geometric lifting. We show that α-cuts, a natural higher-dimensional generalization of the k-cuts of Cornuéjols et al., gives all the split cuts for the mixed-integer corner relaxation. As an immediate consequence we obtain that the k-cuts are equivalent to split cuts for the 1-row mixed-integer relaxation. Further, we s...

متن کامل

A Probabilistic Analysis of the Strength of the Split and Triangle Closures

In this paper we consider a relaxation of the corner polyhedron introduced by Andersen et al., which we denote by RCP. We study the relative strength of the split and triangle cuts of RCP’s. Basu et al. showed examples where the split closure can be arbitrarily worse than the triangle closure under a ‘worst-cost’ type of measure. However, despite experiments carried out by several authors, the ...

متن کامل

Understanding the Strength of General-Purpose Cutting Planes

Cutting planes for a mixed-integer program are linear inequalities which are satisfied by all feasible solutions of the latter. These are fundamental objects in mixed-integer programming that are critical for solving large-scale problems in practice. One of the main challenge in employing them is that there are limitless possibilities for generating cutting planes; the selection of the stronges...

متن کامل

Eco-Friendly Hybrid Concrete using Pozzolanic Binder and Glass Fibers

Hybrid Concrete focused on the development of buildings, highways, and other structures of civil engineering. In the current study, various mix combinations have been prepared and tested with different percentages of super-plasticizer at different levels of water reduction for obtaining the optimum mix. Further, study on different properties of hybrid concrete and replacement of ordinary portla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Optimization

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015